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Abstract—A control design approach with the integration of 
online delay estimation is proposed for wireless networked 
control systems (WNCSs) with unknown round-trip delay, which 
improves control performance in a practically feasible way. We 
introduce a delay probability estimation unit to obtain the delay 
characteristics by estimating the delay when the control system is 
running. We also present a piecewise approximation control 
strategy to take advantage of the estimation. Furthermore, the 
control gain is synthesized with stability guarantee. The 
conditions to ensure the stochastic stability of the closed-loop 
system are given, and the effectiveness of the proposed approach 
is verified numerically.   

Keywords—Delay characteristics online estimation; Markov 
jump system; Piecewise approximation control strategy; Wireless 
network control systems  

I. INTRODUCTION  
Wireless network control systems (WNCSs) realize data 

transmission from sensor to controller and from controller to 
actuator through wireless network. Compared to its wired 
counterpart, it has a lot of advantages due to its flexibility in 
network organizing and building and is easy to deploy, 
maintain and upgrade [1]. Nowadays, WNSCs have attracted 
extensive attention in both academia and industry, related 
application fields include manufacturing executive system 
(MES) [2], unmanned aerial vehicle control [3], automated 
warehouse [4], and energy efficient buildings [5]. 

Although, wireless network brings convenience to control 
systems, it also brings some imperfections, such as non-zero 
delay in data transmission and massage dropouts and errors and 
many papers have studied these problems. For example, [6-8] 
modelled the property of time-varying delay in one or two 
communication channels as Markov process, and the transition 
probability matrix is completely known, then the close-loop 
system can be seen as a Markov jump system, controllers 
ensure system random stability is designed. Specifically, in 
[9,10], the authors proposed controller design approaches with 
uncomplete known transition probability matrix of Markovian 
delay. In [11,12], communication delay is treated as a random 
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variable that satisfies a known probability distribution, and the 
controller is obtained rely on this distribution. 

  However, the assumption that time delay properties, such 
as transition probability matrix and probability distribution, are 
known in advance which most of existing control methods rely 
on is often not available. Reasons are in the following three 
aspects. Firstly, transmission network is usually shared with 
other users, it’s difficult for a control system to obtain detailed 
parameters of the network such as network topology, data 
transmission speed of each user. Thus, it’s difficult to obtain 
time delay properties through computation and simulation by 
network parameter [13,14]. Secondly, in WNCSs, control 
systems can connect to network temporarily, due to the smaller 
scale of wireless network, after the connect of control system, 
the topology of network changes relatively greater, result in 
delay property is greater difference before and after system 
connect to network [15,16]. So the off-line delay measurement 
before the control system connect to the network can’t 
correctly reflect the delay property after control system set up 
and running. Thirdly, after connecting to the network, it takes 
long time to measure time-delay property online, therefore, the 
stability of the control system during measurement cannot be 
guaranteed.  

 Therefore, delay properties are difficult to predict in 
advance, which means that many exist controllers above are 
difficult to be implemented directly in practice. Because of this 
fundamental difficulty, this paper proposed a control method 
combined with delay data measured online. A delay estimation 
module is setup at the controller side to estimate the delay 
properties by using the online delay data obtained after the 
control system is connected to the network. At the same time, a 
triggering condition is designed based on the delay estimation 
online. When the delay property estimation is not accurate 
enough, a more conservative controller is used, and the 
conservatism of controller is gradually reduced with the delay 
property estimation. In the case of unknown delay properties, 
by using this simultaneously estimating and triggering control 
method, the stochastic stability of control system is guaranteed, 
and the conservativeness of the controller is gradually reduced. 

The paper is organized as follows: In Section II, we provide 
some definitions and formulation the WMCS problem that will 
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be considered in this paper. In Section III, a controller with 
online estimation of delay properties is proposed. Section IV 
gives the sufficient conditions for stochastic stability of closed-
loop systems and corresponding control gain design method. 
Section V illustrates the effectiveness of the method through 
numerical simulation. Section VI concludes this paper. 

II. PROBLEM DESCRIPTION 
The structure of the wireless network control system 

discuss in this paper is shown in Fig. 1. The transmission 
network used by control system is shared with other users, and 
the number of nodes and users in the wireless network is 
relatively small. 

 
Fig. 1. Framework of wireless networked control system 

 Consider the linear discrete-time system 

)()()1( kBukAxkx                 (1) 
where nRx  is the state of system, nRu  is control input, 

nnRA and mnRB  are system matrices.  

In this system, sensor, controller and actuator are time 
synchronized. Sensor send measured data to controller through 
wireless network, controller receives data packets and then 
updates control action and sends to actuator. The latest packet 
is selected at the actuator end according to the timestamp of the 
packet and implements on the controlled plant at execution 
time. τk represents the difference between the execution time k 
of the actuator and the timestamp corresponding to the 
execution packet, which is called the round-trip delay at k-th 
step. τk is related to the delay caused by the network, packet 
loss and so on. Similar to literature [7], we proposed two 
assumptions for round-trip delay. 

Assumption 1: There is a upper bound M for round-trip 
delay τk, that is, },2,1,0{: Mk Μ  

Assumption 2: The round-trip delay τk satisfies Markov 
process with transition probability matrix Π, whose transition 
probability is 

10
1

)|Pr( 1 ij
ij

ij ij
kk         (2) 

where Mjiij ,0 , and 1
0

M

j ij . 

Since it is difficult for the control system to obtain the 
delay properties after connecting to the network, we assume 
that Π is unknown. 

Under the assumption above, if we ignore the delay 
properties, the control system design would be conservative. 
The goal of this paper is to design a controller to make system 
(1) to be stochastically stable when the transition probability 
matrix is unknown. 

For subsequent design and analysis, the following 
definitions are required. 

Definition 1: The system is stochastically mean square 
stable, if for any given initial state x0 and initial delay τ0,  

0),|)()((lim 00xkxkxE T

k
           (3) 

holds, where E(X) is the expectation of the random variable X.  

III. DESIGN METHOD BASED ON ON-LINE MEASUREMENT OF 
DELAY INFORMATION  

For a control system connected to network, Π is unknown 
after the connection, therefore, system (1) can only be 
stabilized by a conservative controller, but as time proceeds, Π 
can be estimated through measuring τk online. This makes it 
possible to reduce the conservatism of the controller. At the 
same time, making full use of delay information is helpful to 
improve the control performance. 

 The block diagram of the control system designed in this 
paper is shown in Fig. 2. The operation flow is described as 
follows: the sensor sends the sampling timestamp, the round-
trip delay data, and the state measurement to the controller 
together, the Delay Probability Estimation Unit (DPEU) uses 
the delay data obtained online to obtain the estimation interval 
of the transfer probability matrix, and sends it to the Control-
signal Calculation Unit (CCU), and the resulting control signal 
is sent to the actuator over the network. The actuator selects the 
appropriate control signal for the controlled plant through the 
timestamp and sends the delay data to the sensor. 

 
Fig. 2. Control scheme based on on-line delay measurement 

Next, we present the detailed description of each unit in the 
control scheme.  

A. Improved Jeffery interval estimation method  
For DPEU, the input is the round-trip delay τk, and its 

output is an estimated interval that contains the true value of 
the probability, denoted by k

~ .In order to achieve this aim, it 
is necessary for the actuator to send the round-trip delay 
corresponding to the actuation packet to the sensor, and then 
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send the round-trip delay to the controller together with the 
sampling timestamp and the state. For example, the round-trip 
delay of the (k-1)-th step, 1k , will be included in the k-step 
packet. The DPEU selects the corresponding data according to 
the timestamp to estimate.   

In traditional Jeffery interval estimation method, with the  
round trip delay data, take the prior distribution of the 
estimated value kij ,ˆ  of ij  as the β distribution with 
parameter a, b, i.e. β(a,b). Estimation interval is 

]ˆ,ˆ[ ,, kijkij ,where kij ,ˆ  and kij ,
ˆ  are shown in  (4) 

),,
2

1('ˆ

),,
2

('ˆ

,,,,

,,,,

bXNX

aXNX

kijkikijkij

kijkikijkij
 (4) 

where ),,(' edh represents the h quantile of the β distribution 
satisfying the parameter d, e, 1-α is the confidence level. 

kijX , is the number of delay samples with the delay of j at the 
current time when the delay of previous time is i. kiN ,  is total 
number of samples with delay of i at the previous time.  

 If we use Jeffery interval directly, the delay data comes 
from online measurement, and only one delay data can be 
obtained per step of control, therefore at the beginning of 
estimation, there are fewer delay samples, which may lead to 
the confidence of the estimation interval less than the set value. 
So this paper improves the Jeffery interval estimation method. 

 In order to avoid this problem, we develop a learning 
scheme. When the number of samples is not enough, we makes 
the estimated interval is close to [0,1] which is conservative, 
and when the sample size increases, the trust degree of 

]ˆ,ˆ[ ,, kijkij  is gradually increased. The learning process can 
be described as follows, where 1 is a parameter greater than 1. 

1,11,

1,111,

ˆ)1(

ˆ)1(
,

,,

kij
N

kij

kij
NN

kij

ki

kiki

       (5) 

 The interval of improved Jeffery estimation is ],[ ,, kijkij . 

 We introduce a parameter ω to describe the degree of 
convergence of the estimate, ω will be used in controller 
designing in the Section IV. 

Otherwise
kijkijji

0

)(max1 ,,, M  

where ε is the given threshold. If the width of estimation 
interval is smaller than threshold, it indicates the estimation is 
close enough to the true value. 

B. Switching control strategy 
 For CCU and actuator, a switching control strategy is 
proposed in this paper, which can reduce the conservatism by 
using the delay estimation interval obtained online on the 
premise of ensuring stability of the system. 

 The controller sets a switching time judgment condition 
and selects appropriate switching time. The system uses a 
newer delay transfer probability matrix estimation interval to 
update control gain at the switching time, and uses the same 
stabilization control gain in between the two switching times. 

 The selection of switching time is related to the states of the 
system. If the two adjacent switching states are guaranteed to 
meet the decreasing relationship, the control gain will be 
updated to ensure the stability of the resulting switching system. 
When the system state is far from the equilibrium point, the 
switching will not occur, which ensures that the system state 
tends to the equilibrium point in general. A detailed proof of 
the stability will be given in Section IV. Therefore, we design 
the switching condition as (6a) in CCU. 

1)()()()( 1 crzrzckzkz kk
TT  (6a) 

MLLrk k  (6b) 

where ))(,),1(),(()( Mkxkxkxkz TTTT , kr is the latest  
switching time before time k, and L and  c are adjustable 
parameters. The greater L and c are, the greater the interval 
between two switches. By choosing appropriate L and c, we 
can minimize the computation burden of the controller while 
the system performance can be guaranteed.  

 Let the switching times be },,{: 21 rrR , ir  represents 
the ith switching time. In order to ensure that the control signal 
applied between adjacent switching times comes from the same 
delay transition probability matrix estimation, and combined 
with (6b), let the corresponding switching time of ir  be 

Lri , and we designed the following control signal 
transmission and actuation way. 

When Rk , we update the switching time, and utilize the 
latest delay transfer probability matrix to estimate interval 

k
~ to update the control gain. Otherwise, we do not update. 

Denote the control signals obtained by updated control gain 
and the previous control gain as curU , oldU ,  

When Rk  

)()~(),()~( kxKUkxKU

Lks

kroldkcur

k
         (7) 

When Rk  

)()~(),()~( kxKUkxKU

Lrs

kr
k roldrcur

kk
       (8) 

For the actuator side, at time k, the actuator takes the latest 
packet with a timestamp of kk , and reads the switching 
time in the data packet as 

kks . If the current time is not less 
than the switching time, take curU as control signal, otherwise, 
take  oldU , i.e., 
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kLkks

kkk

kkr

kkLs

skkxK
skkxK

ku )()~(
)()~(

)(      (9) 

With switching mechanism above, and together with (6b), 
(7), (8), (9), we can ensure that the controller applied in 
between two switching times is computed by the same delay 
transfer probability matrix, as shown in (10).  

LrkLrkxKku iikri 1)()~()(
1

     (10) 

where Lri 1- , Lri  are the adjacent switching time near to k. 

The control method combined with online delay measure-
ment is summarized as Algorithm 1. 

Algorithm 1: Control scheme based on round-trip delay on-
line estimation  

 Initialization: Set switching time r and switching time s 
as 0. Send the data packet from the sensor to the 
controller, which includes sampling timestamp, the latest 
round-trip delay and M state vectors. 

1 The round-trip delay information is sent to the DPEU, 
and send the state to the CCU. 

2 DPEU updates the transition probability matrix 
according to (4) and (5). 

3 The CCU determines whether the received states satisfy 
the switching condition (6a), (6b) and updates the data 
packet according to (7), (8) and sends it to the actuator. 

4 The actuator selects the latest packet at current sampling 
time k and selects the control gain according to (9). At 
the same time, the latest round-trip delay is sent to the 
sensor. 

IV. STABILITY ANALYSIS AND CONTROLLER DESIGN  
In this section, sufficient conditions for the stability of the 

closed-loop system are given for the controller design method 
in Section III. 

From system (1) and (10), we obtain the closed-loop 
system as 

LrkLrkxBKkAxkx iikri 1)()~()()1(
1

 

(11) 

Because the round-trip delay satisfies the Markov process, 
we can rewrite (11) into the form of Markov jump system 

LrkLrkzkz iirik 1)()~()1(
1

       (12) 

where )~(
1ik r is shown in (13), and I is a unit matrix with 

suitable dimension. )~(
1ik r  is related to the value of k , 

and it has different representations for different delays, when 

delay is v,  then )~(
1irBK  lies in the v+1 column of the 

first row. 

0

0
0
0

0
0
000)~(00

)~(

1

1

I

I
I

I

I
I

BKA
i

ik

r

r   (13) 

The stochastic stability conditions of the closed-loop 
system are given as follows. 

Theorem 1: The system (1) is stochastically stable under 
the designed control strategy. If for Rr , there is a 
corresponding set of symmetric positive definite matrices 

MP iP rir ,, , 1, which makes 2(M+1) LMIs (14a) and 
(14b) holds,  

0))1((

))1)(1)(1((

,,,,

,,,,

riiririiri
T
i

irj

M

ij
rijririi

T
i

PPP

PP
    (14a) 

MjiPP ji ,)1(               (14b) 

where r, , r, are the estimate upper and lower bounds of 
corresponding transition probability by using the delay data,  

 indicates whether the estimation is convergent. 

Proof:  For time k, there must be adjacent switching times 
ar , 1ar , that make ),[ 1 LrLrk aa , To simplify the 

notation,  we denote the interval as ),[ kk ss . According to (10), 
in the interval ),[ kk ss ,the control gain maintains unchanged. 
Therefore )~(

1ik r in (12) is only related to delay, and we 

denote it as 
k
. 

Consider the following Lyapunov function,  

)()())(( , kzPkzkzV
ak r

T  

where 
ak rP , is the positive definite symmetric matrix 

corresponding to the delays at every time k, which remains 
unchanged in between two switching times. Then the 
difference of the Lyapunov function is 

)())()((

)),(|)()1((

,
1

, kzPPkz

ikzkVkVE

aai rii

M

j
rjij

TT

k

        (15) 

According to the nature of the transition probability, we 
know 
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ji
ijii -1                  (16) 

When 0 , from (14b) and (16) , we can rewrite (15) as 

)())1)(1()((

)()))1(()((

)()))(()((

)())()((

,,,

,,,

,,,,

,
1

,

kzPPkz

kzPPPkz

kzPPPPkz

kzPPkz

aai

aaiai

aaiaai

aai

riiri
T

irii
T
i

T

riiri
T

i

M

ij
riij

TT

riiri
T

iri

M

ij
rjij

TT

rii

M

j
rjij

TT

(17) 

(14a) guarantees (17) is less than 0, thus there exists 1 , 
10 1 , such that (18) holds 

)()),(|)1(( 1 kVkzkVE k            (18) 

For the same reason, when 1, (18) also holds. 

Since the control gain sequence used at any time between 
the two switching times is constant, recur (17) we can obtain 

)()()),()(( ,1 krk
Tsk

sk szPszs|zkVE
a

ks

k

k
      (19) 

From (19) we can obtain  

)(/)(max

)()()),(|)()((

,min,max,1

1

aa

k

k

rjriji

kk
Tsk

sk
T

PP

szszszkzkzE

M

 (20) 

where  )(max , )(min indicate the maximum and minimum 
eigenvalues of the matrix. 

Since we keep the control gain obtain at time ar  constant 
for the interval between ar  and the next switch time ks , we 
can get (21) which describes the relationship of states in 
between switch instants, 

)()()),(|)()(( 22 aa
TL

ra
T rzrzrzkzkzE

a
       (21) 

From (6a), (20) and (21), we obtain 

00211200 ),|)()(( zzczkzkzE TwskLT k      (22) 

Therefore 

0lim),|)()((lim 00211200 zzczkzkzE TwskL

w

T

k
k (23) 

It satisfies the definition of stochastically stable, thus 
Theorem 1 is proved.                                ▄ 

Corollary 1: The system (1) is stochastically stable under 
the designed control strategy. If for Rr , there is a 
corresponding set of symmetric positive definite matrices 

MP iP rir ,, , control gain K, and 1, such that LMIs 
(24) and (25) holds,  

0
,

,,

rri

T
riri

T
TP

                (24) 

MjiPP rjri ,)(1 ,,            (25) 
where 

)),)1(,,)1((

]))1((,

,)/)1)(1()1((

,)/)1)(1()1((,

,)/)1)(1()1[((

1
,

1
,

1
,

1
,1

1
,

,

,1,

,1,

,1,,

rirMrirrir

T
irii

T
iriirii

T
iriirii

T
iririi

T
ri

PPPPPdiag

M

M

MT

 

 This corollary can be proved by applying Schur 
complement on LMIs in Theorem 1.  

 In (24) and (25), η is coupled with rP and K when ω=0. 
The following off-line solution Algorithm 2 is designed to get 
η. Then K can be obtained by cone complementarity 
linearization (CCL) algorithm in [17]. 

 

Algorithm 2: Finding solution of η off-line 

1 Input : 0,ii =0, a given step size N, η=1, ω=0 

2 While (24) has solution, do 

3        η=η+N 

4 While (24) and (25) has no solution, do 

5        η=η-N 

6 Output: η 
 

V. NUMERICAL EXAMPLE 
Consider linear discrete system (1), and the system 

matrices are given as, 

4.0
2.0

0163.125.0
25.07769.0

BA  

The eigenvalues of the system are 0.6193 and 1.1738, 
respectively. The open loop system is an unstable system. The 
initial states x(0)=[5,5]T, and initial delay τ0=1. 

For the network delay properties, the upper bound M of the 
packet round-trip delay is 4. In the simulation, the delay 
transition probability matrix is set as Π: 

0.40.30.150.10.05
0.30.20.20.150.15
00.50.20.20.1
000.70.10.2
0000.90.1
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 DPEU estimates Π by delay data. In Fig. 3, we plot 
estimation interval of π23 get by improved Jeffrey interval 

],[ ,23,23 kk (solid line), the estimation parameters are 
1.011 , α=0.01, and traditional Jeffrey interval 

]ˆ,ˆ[ ,23,23 kk (dotted line). Fig. 3 shows that traditional Jeffrey 
interval may not cover 0.7 at beginning of the time evolution, 
but improved Jeffrey interval contains 0.7 all the time. 

 

 
0 1500
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Fig. 3. Estimation trajectories of ],[ ,23,23 kk and ]ˆ,ˆ[ ,23,23 kk  

Next, the state trajectories of the closed-loop system under 
the switching control strategy are shown in Fig. 4, it is shown 
that the switching control strategy can make the system stable. 

 

 

Fig. 4. State and control trajectories under the switching control strategy  

 

VI. CONCLUSION 
This paper proposed a switching control strategy with 

round-trip delay online measurement data for wireless 
networked control systems when the delay properties are 
unknown. A delay probability estimation unit, which 
gradually reduces the conservatism of the control, is 
integrated in the control system which employs the latest 
delay transfer probability matrix to update the control gain 
during the switching interval. The effectiveness of the 
control strategy is verified by a numerical example. 
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